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A three-dimensional lattice gas model for enantiomeric phase separation is 
introduced. The enantiomeric molecules (d and /) are the two nonsuperim- 
posable mirror images having the molecular structure C(AB) 2, where C is a 
tetrahedrally bonded carbon atom with one bond to each end of two AB 
groups. The lattice gas model consists of a body-centered cubic lattice, each site 
of which can be either vacant or occupied by a molecule oriented so that the A 
and B groups point toward neighboring lattice sites. Pairs of molecules interact 
with short-range, orientationally-dependent interactions. For a domain of inter- 
action parameters, the Pirogov-Sinai extension of the Peierls argument is used 
to prove that d-rich and /-rich phases exist in the model at sufficiently low tem- 
perature. For another domain of interaction parameters, at sufficiently high 
chemical potential there is an infinite number of ground states, each containing 
a racemic mixture of d and l molecules. 

KEY WORDS: Enantiomers; phase transitions. 

1. INTRODUCTION 

A molecule which has a nonsuperimposable mirror image is said to be chiral, 
and the two molecular forms constitute an enantiomeric pair, d and I. In 
the present paper we introduce a three-dimensional model for enantiomeric 
phase separation. For physically realistic orientationally-dependent inter- 
molecular interactions, we prove that d-rich and /-rich phases exist in 
the model at sufficiently low temperature and sufficiently high chemical 
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potential. This is the first three-dimensional model in which enantiomeric 
phase separation has been proved to occur. 

This type of phase separation has been previously studied using a two- 
dimensional model with orientationally-dependent molecular interactions. 
A two-dimensional lattice gas model for enantiomeric phase separation was 
introduced in 1985 by Huckaby  e t a L  cl~ The sites of a triangular lattice 
could be occupied by either of the two enantiomeric forms of  a molecule 
which consists of a carbon a tom tetrahedrally bonded to four different 
groups. The molecules are situated on the lattice such that the carbon a tom 
is above a lattice site, a certain one of  the four groups points away from 
the lattice plane, and the other three groups, A, B, and G, point toward 
neighboring lattice sites. Depending on the relative orientations of  the 
neighboring molecules, the groups can interact in either of  the two ways 
illustrated in Fig. I. 

A special case of the model in which A and B are oppositely charged 
and G is a neutral group was used to model the zwitterion forms of an 
amino acid, where the group G characterizes the particular amino acid. 
The interactions were then approximated using the two parameters 
/~ = /~AB = - - e A A  = --eBB < 0 and ), = eAG = eac = eGG < 0. For  the case of 
equimolar concentrations of d and l molecules, symmetry requires that 
# ~ - - # a - # .  For  this case of the model, a modification of the Peierls argu- 
ment ~2~ due to Heilmann 131 was used to prove the existence of enantiomeric 
d-rich and /-rich phases at sufficiently large chemical potential and suf- 
ficiently low temperature, if the energy parameters satisfy e < ~ < 0. 

The phase diagram for the model was calculated t4~ using a cluster 
approximation. If the G group is so large as to sterically exclude a 
neighboring G group, then ego ' - '  o0, and the phase diagram was found to 
exhibit a tricritical point at which a d-rich, an /-rich, and a racemic phase 
simultaneously become a single phase. ~s~ A tricritical point can occur in 

B B B �9 A \ \ / \ 
C A C A A C C G / / \ / 

G G G - B 

a b 

Fig. I. The two basic types of relative orientations possible for a pair of interacting 
molecules in a previously studied two-dimensional lattice gas model for enantiomeric phase 
separation. 
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this two-component system because of the special symmetry present 
between enantiomers. 

Chiral recognition in two-dimensional films has recently been a topic of 
considerable interest. 16-8~ In 1988 Andelman and de Gennes published results 
for a model used to study chiral discrimination between enantiomeric 
molecules in Langmuir-Blodgett  films, c9~ As in the model of ref. 1, a certain 
group (here the hydrophobic tail) points away from the plane of the film. 
Neighboring pairs of molecules interact, but only if they are in the relative 
orientation of Fig. lb. By considering the partition function for a pair of 
neighboring molecules, they studied the effects of different types of inter- 
actions on chiral discrimination. Among their conclusions were that 
racemization is favored if van der Waals interactions are present and 
enantiomeric discrimination is favored if two of the groups are oppositely 
charged and the third is neutral. Their work c9' 1ol received a favorable critique 
by the editor of Nature magazine. I~1~ 

In the present paper we introduce a three-dimensional lattice gas 
model, described in detail in Section 2, in which the two enantiomeric 
forms, d and /, of a tetrahedral molecule (see Fig. 2) can occupy the sites 
of a body-centered cubic (bcc) lattice (see Fig. 3). Molecules on pairs of 
first- or second-neighbor sites interact with physically realistic orienta- 
tionally-dependent intermolecular interactions. 

For sufficiently large chemical potential, we prove in Section 3 that for 
a domain of interactions the ground states are finitely degenerate and consist 
of either all l or all d molecules, and that for another domain of interactions 
the ground states are infinitely degenerate and consist of a racemic mixture 
of d and 1 molecules. For the above case with a finite number of ground 
states, in Section 4 we use the Pirogov-Sinai extension ~2'~3~ of the Peieris 
argument t2~ to prove that d-rich and /-rich phases exist in the model at 
sufficiently high chemical potential and sufficiently low temperature. 

2. T H E  M O D E L  

We consider a two-component lattice gas in which enantiomeric 
molecules occupy the sites of a bcc lattice. The enantiomers, d and 1, are 
two nonsuperimposable mirror images, illustrated in Fig. 2, which have the 
structure C(AB)2, where C is a central carbon atom tetrahedrally bonded 
to each end of two AB groups. An AB group is composed of an A and a 
B group bonded'together by an "AB bond." The AB bonds are depicted in 
Fig. 2 by curved lines. The thick straight lines represent "CX bonds," where 
by X we denote an A or a B group. 

Four molecules on sites of a bcc lattice are illustrated in Fig. 3. The 
central carbon atom of a molecule occupies a lattice site, and the molecule 
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B 

B 

B 
Fig. 2. An enantiomeric pair of molecules, d and 1, consisting of a molecule with the 

structure C(AB) 2 together with its nonsuperimposable mirror image. 

can be oriented in any one of the 12 molecular orientat ions in which the 
four CX bonds point  tetrahedrally toward neighboring lattice sites. (There 
are thus 25 different configurations possible at a lattice site, including the 
vacancy and the 12 orientat ions possible for a d or l molecule.) Two 
molecules will be said to both be in the same "CX-bond orientat ion" if 
their CX bonds can be superimposed (regardless of the A or B nature  of 
their ends) by t ranslat ion of one of the molecules. A molecule in a certain 
one of the two possible CX-bond orientat ions can then be in any one of six 

B ' " - " ' " " -  , "'13 4 .E'" 

, 

Fig. 3. Enantiomeric molecules in several different molecular orientations possible in the 
model. The octahedron and its translates are used in the construction of an m-potential in 
Section 3. 
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possible molecular orientations. In Fig. 3, molecules 1 and 2 are in one 
CX-bond orientation, and molecules 3 and 4 are in the other CX-bond 
orientation. 

Our model contains the following three types of short-range interac- 
tions: a hard-core repulsion between A and B groups, electrostatic inter- 
actions between A and B groups, and steric repulsions between AB bonds. 
We shall now define each interaction in detail. 

Let X and Y refer to A or B groups on different molecules. We shall 
assume the CX-bond length is less than half the first-neighbor lattice 
spacing, but that steric repulsion between X and Y groups is sufficiently 
strong to exclude more than one such group from being between two first- 
neighbor lattice sites. This means that first-neighbor molecules can be in 
different CX-bond orientations only if there is no X group on the lattice 
bond connecting their C atoms. Since, in a filled lattice there are the same 
number of such lattice bonds as there are X groups, then all of the 
molecules in a filled lattice must be in the same CX-bond orientation. 

In addition, we shall assume the following interactions between X and 
Y groups: 

�9 As is illustrated with molecules 1 and 2 of Fig. 3, there are three 
closest pairs of X and Y groups on molecules which are first 
neighbors and in the same CX-bond orientation. We denote the 
interaction of each such pair by e lxv. 

�9 As is illustrated with molecules 2 and 3 of Fig. 3, there are six pairs 
of closest X and Y groups on molecules which are first neighbors 
and in opposite CX-bond orientations. We denote the interaction 
of each such pair by e xv'. 

�9 As is illustrated with molecules 3 and 4 of Fig. 3, there are four 
closest pairs of X and Y groups on molecules which are second 
neighbors and in the same CX-bond orientation. The interaction of 
each such pair will be denoted e xv. 

�9 As is illustrated with molecules 1 and 3 of Fig. 3, there are two 
closest pairs of X and Y groups on molecules which are second 
neighbors and in opposite CX-bond orientations. The interaction of 
each such pair will be denoted e xv'. 

We further assume the presence of charge separation such that A and 
B groups have opposite charges. The above interaction parameters are then 
assumed to satisfy, where i =  1 or 2, 

= = 

(1) 
< 0  
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A subscript 1 or 2 on an energy parameter e refers to whether the inter- 
acting groups are on molecules which are first or second neighbors, and the 
absence or presence of a prime on an energy parameter refers to whether 
the molecules are in the same or opposite CX-bond orientations. Since the 
interaction between groups is expected to decrease with distance, we 
assume further that e~ <e2 and that e'~ and e2 are of the same order of 
magnitude as both ~ and ~2. All other pairs of X and Y groups are farther 
apart  than the four types mentioned above and are assumed to not inter- 
act. 

In addition to the electrostatic interactions between X and Y groups, 
we shall also assume there are short-range steric repulsions between 
neighboring AB bonds. There are four different relative orientations of 
neighboring AB bonds in which the AB bonds are closer than in other 
orientations. The AB bonds in these orientations should thus experience 
some steric repulsion. We shall assume two AB bonds 

�9 Repel with an energy 
metric to that of the 
Fig. 3. 

�9 Repel with an energy 
the closest AB bonds 

�9 Repel with an energy 
the closest AB bonds 

?j if they are in a relative orientation sym- 
closest AB bonds of molecules 1 and 2 in 

y'~ if in an orientation symmetric to that of 
of  molecules 2 and 3 of Fig. 3. 

?2 if in an orientation symmetric to that of 
of molecules 3 and 4 of Fig. 3. 

Repel with an energy 7~ if they are in an orientation symmetric to 
that of the closest AB bonds of molecules 1 and 3 of Fig. 3. 

The interaction energies y~, "~'~, 72, and 7:, are all positive and expected to 
be of similar magnitude. Here we have used a notat ion similar to that used 
for the interactions between X and Y groups, a subscript 1 or 2 on an 
energy parameter ? referring to whether the interacting AB bonds are on 
molecules which are first or second neighbors, and the absence or presence 
of a prime on an energy parameter referring to whether the molecules are 
in the same or opposite CX-bond orientations. In all other relative bond 
orientations, even several in which the molecules are first or  second 
neighbors, the AB bonds are farther apart  and are assumed to not interact. 

In Section 3 we shall rigorously obtain the ground-state configurations 
of  the model for the case in which the chemical potentials of  the molecules 
are sufficiently large so as to exclude the occurrence of  vacancies in the 
ground-state structures. 
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3. G R O U N D  STATES AT  H I G H  C H E M I C A L  P O T E N T I A L  

We shall consider the case in which there are equal mole fractions of 
d and l molecules in the overall system. Because of the symmetry between 
d and l molecules, we can conclude that for this case the chemical 
potentials of d and l molecules are equal , /~  =/~d =/~. The grand canonical 
partition function for this case of the model on a bcc lattice with periodic 
boundaries is given as 

3 =  ~ e -tt(r (2) 

where the Hamiltonian for a configuration r is 

H({) = E(~) - #N(~) (3) 

Here N(~) molecules are present in ~ and have an interaction energy E(~). 

3.1. H a m i l t o n i a n  Rest r ic ted  to  an O c t a h e d r o n  

We next consider the set O of octahedra obtained by translations of 
the octahedron pictured in Fig. 3. The vertices of each octahedron in O 
include eight pairs of first-neighbor lattice sites and five pairs of second- 
neighbor lattice sites. Each octahedron in O has one pair of second- 
neighbor lattice sites which are translates of sites I and II of Fig. 3 and 
which are not contained in any other octahedron in O. Each of the other 
pairs of first- and second-neighbor sites in the bcc lattice are contained in 
exactly two of the octahedra in O, and each lattice site is contained in six 
octahedra in O. 

To each octahedron o e O we shall assign a restricted Hamiltonian 
Ho(~) which is equal to the sum of - # / 6  for each site of o that is occupied 
by a molecule in ~, plus the total interaction energy between molecules in 

which occupy the pair of second-neighbor sites that are translates of sites 
I and II in Fig. 3, plus one-half of the interaction energy between molecules 
on other pairs of sites in o. The Hamiltonian for the configuration ~ can 
then be written as 

H(~)= ~ Ho(~) (4) 
o ~ O  

If there exists a configuration ~ such that the restricted Hamiltonian 
for every octahedron o ~ O has the value H ~ satisfying 

H ~ = min Ho(~) (5) 

822/75/5-6-14 
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for a domain D of the parameter space (el, e'~, e2, e~, ),~, 7'1, )'2, Y~, #), then 
~c is a ground-state configuration of the system in D, and the restricted 
Hamiltonian constitutes an "m-potentiar 'c~3~ in D, the potential being equal 
to Ho(~) on octahedra o e  O and equal to zero on all other subsets of the 
lattice. Every ground-state configuration in D is then composed entirely of 
octahedra with restricted Hamiltonians equal to H ~ 

Since we are interested in studying enantiomeric phase separation in 
condensed phases, we shall elucidate the ground-state configurations only 
in regions in which /1 is so large (t t>/~*) that every octahedron in a 
ground-state configuration has no vacant lattice sites. Later in this section 
we shall obtain an upper bound to p*. Since, as shown above, all of the 
molecules in a filled lattice must be in the same CX-bond orientation, then 
only the unprimed energy parameters el, /~2, 71, and Y2 are operative in 
these ground-state configurations. 

The restricted Hamiltonian for an octahedron in which each site is 
occupied by a molecule can be written as 

Ho=E~+ E;,-U (6) 

where E, and E~. are the contributions to Ho which result respectively from 
X-group interactions and from AB-bond interactions. 

We shall calculate separately the minimum values for E, and for E~, 
and then determine the (nonempty!) set of restricted configurations on an 
octahedron for which both E, and E~. are minimal. The fact that there are 
configurations in which E, and Er are separately minimized greatly sim- 
plifies the determination of the set of restricted configurations on an 
octahedron for which Ho is minimal. The set of ground-state configurations 
is then composed entirely of octahedra with restricted configurations for 
which Ho is minimal. 

3.2. Determination of min E, 

We now proceed to calculate a minimum for E~. Certain features of 
the structure of a configuration will be exploited to simplify this calcula- 
tion. Because of our assumption that steric repulsions exclude more than 
one X group from the space between a pair of first-neighbor sites, then if 
all the vertices of an octahedron are occupied by molecules, the molecules 
must necessarily all be in the same CX-bond orientation. Two molecules in 
the same CX-bond orientation will be said to have the same "X-group 
orientation" if their X groups can be superimposed (A on A, B on B) by 
translation of one of the molecules. A molecule in a certain CX-bond orien- 
tation can be in any one of six different X-group orientations. A molecule 
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in a certain X-group orientation is then either a d or an I molecule, depend- 
ing on which of the two possible orientations for the AB bonds is realized. 

If a pair of first-neighbor molecules are in the same CX-bond orienta- 
tion, three X groups on one molecule interact with a single Y group on the 
other molecule, yielding a total interaction energy equal to either e~ or  
- e~ .  If a pair of  second neighbors are in the same CX-bond orientation, 
each of two X groups on one molecule interacts with two Y groups on the 
other molecule, yielding a total interaction energy equal to either 4e,_, 0, or 
- 4 ~  2. 

Consider a triangle of three molecules, called a "r-triangle," in which 
molecules 1 and 2 are second neighbors, molecule 3 is a first neighbor to 
both molecules 1 and 2, and all three are in the same CX-bond orientation 
(see Fig. 4). Molecules 1 and 2 must have the same X-group orientation if 
their X groups interact with minimum possible total energy 4e2, and 
molecule 3 must then have the same X-group orientation as molecules 1 
and 2 if it interacts with minimum possible total energy e~ with each of 
them (see Fig. 4). 

Using the above observation for z-triangles, one can easily see that 
E~=4~1+4~2 if and only if the six molecules at the vertices of the 
octahedron (see Fig. 3) all have the same X-group orientation. Although 
4e~ is the minimum possible contribution to E~ from pairs of first-neighbor 
molecules, the minimum possible contribution to E, from pairs of second- 
neighbor molecules is 8e2. However, for the octahedron of Fig. 3, if the 
contribution to E~ from second-neighbor molecules exceeds 4e2, then the 
molecules at vertices I and II must necessarily be in the same X-group 

A 

A B 

B 

A & 
A B 

B 

A 

A B 

B 

Fig. 4. A r-triangle of three molecules referred to in the derivation of Eq. (7). Molecules 1 
and 2 are second neighbors and molecule 3 is a first neighbor to both molecules 1 and 2.[The 
AB bonds are not shown since their positions are irrelevant for the derivation of Eq. (7).] 
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orientat ion,  giving a cont r ibu t ion  of 4132 to Ee. One can then see that  
E~ = 8e2 + n~e~ can occur only if all four T-triangles with vertices at I and 
II  do not  have minimal  f i rs t-neighbor energy, and thus n~ ~<0. Likewise, 
E , =  6e2+n~e~ can occur only if at least two z-triangles with vertices at I 
and II  do not  have minimal  f i rs t-neighbor energy, which requires n t ~< 2. 
Since we assumed el < e2, then 

min E,=4e~ + 4 e  2 (7) 

with all molecules on the oc tahedron  necessarily having the same X-group 
orientat ion.  

3.3. Determinat ion of min E~ 

After making  some useful observat ions,  we shall calculate rain E r. We 
shall call the line connect ing the midpoin ts  of the two AB bonds  the 
"AB-bond  line" of the molecule (see Fig. 5). If a pair  of f i rs t-neighbor 
molecules have the same CX-bond  or ientat ion,  their  closest AB bonds  do  
not  interact  if their  AB-bond  lines are parallel ;  otherwise, they interact  with 
energy ~ ,  and their AB-bond  lines are perpendicular .  If a pair  of  second- 
ne ighbor  molecules have the same CX-bond  or ientat ion,  their  closest AB 
bonds  interact  with energy 3'2 if their AB-bond  lines are colinear;  otherwise,  
their  AB bonds  do  not  interact.  

J 

f 

J 

J 

J 

J 

Fig. 5. The AB-bond line is illustrated for a molecule. The relative orientation of AB-bond 
lines in a plane is illustrated for a ground-state configuration in which there are no )'2 inter- 
actions (see Section 3.4). 
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Referring to the definition of Ho given in Section 3.1, E r has the form 
E~,=n~y~+n2y2, where n~ and n2 are nonnegative and half-integer. If  
n ~ = 0 ,  the AB-bond lines of all six molecules in the octahedron are 
necessarily parallel, which requires that  n2 = 1. 

There are four paths of first-neighbor links which connect vertices I 
and II  (see Fig. 3), and hence there are six closed loops of four first- 
neighbor  links on the octahedron.  It  is obviously impossible for there to be 
exactly one pair of first-neighbor molecules on a loop which have per- 
pendicular AB-bond lines (and hence a 71 interaction). Thus n~ = 1/2 is 
impossible. 

If n~ = 1, every loop which contains one of the two first-neighbor pairs 
with a y, interaction must also contain the other pair. This can occur only 
if both  pairs contain a c o m m o n  molecule M, which is neither at site I nor  
at site II. Then the five molecules other than M must necessarily have 
parallel AB-bond lines. Consequently,  at least one pair  of second neighbors 
from these five molecules must  have a ?2 interaction. Thus r/2 = 1/2 is the 
min imum possible value for n2, given that  n~ = 1. 

The value n t =  3/2 cannot  occur, for by inspection one can see that  at 
least one loop would be required to have exactly one pair of first neighbors 
with perpendicular  AB-bond lines, which is impossible. 

The  value of nl = 2 can occur with the min imum possible value for n2, 
namely n2 = 0. For  example,  consider the restricted configuration in which 
the AB-bond lines of all six molecules are parallel, and there is a ?2 inter- 
action between molecules at sites I and II. If the AB-bond line on the 
molecule at site I is changed, a restricted configuration is obtained which 
has nt = 2  and / / 2 = 0 .  

The above analysis implies that  min E}. occurs with either n~=  0 and 
n2= I, n~ = 1 and n . ,=  1/2, or n t - -2  and n 2 = 0 .  We can thus conclude that  

min E~, = min{72, 2?,} (8) 

3.4. G r o u n d - S t a t e  Conf igura t ions  

If we can find configurations in which every octahedron ha.s a restric- 
ted Hami l ton ian  with the value 

Ho = min E, + min E~. - / ~  (9) 

then at sufficiently large/a, the set of all such configurations constitutes the 
set of ground-state  configurations, and the restricted Hamil tonian  con- 
stitutes an m-potent ia lJ  TM 

As shown above, in a restricted configuration for which E~ is minimal, 
all six molecules must necessarily be in the same X-group orientation. 
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Thus, in all restricted configurations for which Ho has the value given by 
Eq. (9), all molecules must have the same X-group orientation. 

In a configuration for which Ho is given by Eq. (9), a molecule in a 
certain X-group orientation is identified as d or l according to which of the 
two possible orientations for the AB bonds is realized. We shall determine 
which of these AB-bond orientations can occur for the molecules in restricted 
configurations for which both E~. and E~, are minimal. Equation (8) 
indicates we should consider two cases, 72 < 27j and 271 <Y2. 

If Y2 < 27~, then min E l, = 72 and, as deduced above, the AB-bond lines 
of all the molecules in an octahedron are parallel. Hence, in a restricted 
configuration for which Ho is minimal, the molecules are either all d or all 
l and are all in a single molecular orientation. The only configurations 
which are composed of such restricted configurations are the 24 configura- 
tions in which every molecule is of a single enantiomeric type, d or l, and 
all are in a single molecular orientation. These 24 configurations thus 
constitute the set of ground-state configurations for the case Y2 < 27~, and 
the restricted Hamiltonian is an m-potential. 

If 27, < 72, there are no Y2 interactions in a ground-state configuration. 
In order to elucidate the molecular orientations and d, 1 structure present 
in configurations which have no 72 interactions, consider a plane which 
passes through a lattice site and is perpendicular to the bisector of the ACA 
angle of the molecule at that site (see Fig. 5). The plane contains a square 
lattice of sites from the bcc lattice, the square lattice having a first-neighbor 
distance which is equal to the second-neighbor distance in the bcc lattice. 
Since the molecules all have the same X-group orientation if E, is mini- 
mized, the AB-bond lines of all the molecules are parallel to the plane. 
Each AB-bond line is in one of two perpendicular directions and points 
toward two neighboring lattice sites of the square lattice. The AB-bond line 
for a d molecule points in one of these directions, and the AB-bond line for 
an l molecule points in the other, perpendicular direction. Since a pair of 
second-neighbor molecules with colinear AB-bond lines has a 72 interac- 
tion, there will be no 72 interactions in the plane if and only if one of two 
square sublattices of the square lattice in the plane is occupied by d 
molecules and the other is occupied by l molecules (see Fig. 5). 

We will now show that each configuration having the above d, 1 
structure in each of a set of parallel planes is also composed of octahedra, 
each of which has a minimal value of the restricted Hamiltonian. The con- 
figurations with this structure will thus constitute the set of ground-state 
configurations, and the restricted Hamiltonian will be an m-potential. 

Every octahedron contains one square with vertices at lattice sites and 
edges of second-neighbor length. (See, e.g., the square formed from all but 
sites I and II in the octahedron of Fig. 3.) Such a square must contain a 
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pair of second-neighbor sites from one of the planes discussed above, the 
second pair coming from either the same plane or a second plane parallel 
to the first. In any configuration having the above d, l structure, the square 
will thus contain two d and two l molecules. The other two molecules in 
the octahedron are first neighbors to all four molecules on the square. Since 
d and ! molecules in the same X-group orientation have perpendicular AB- 
bond lines, first-neighbor d, ! pairs will have a y ~ interaction, while d, d and 
1, l first-neighbor pairs will have no ~ interaction. Thus every octahedron 
embedded in one of these configurations has a restricted Hamiltonian with 
a minimal value given by Eq. (9) with E~ = 2~1, and there are several dif- 
ferent restricted configurations possible for such an octahedron. 

If there are p such parallel planes with alternating d and / molecules, 
there are 2 p ground-state configurations in which all of the molecules are 
in a certain one of the 12 different possible X-group orientations. Hence, if 
2~'1 < ~'2, the ground-state configurations, each of which contains a racemic 
mixture of d and I molecules, are infinitely degenerate, but have no residual 
entropy. 

3.5. U p p e r  Bound on IJ A b o v e  W h i c h  Ground  Sta tes  Conta in  
No Vacancies  

We are now in a position to calculate an upper bound to #*, the value 
of the chemical potential above which all restricted configurations which 
have a minimum value of the restricted Hamiltonian contain no vacant 
lattice sites. 

If, at a chemical potential #, the minimum value of the restricted 
Hamiltonian for an octahedron with no vacancies given by Eq. (9) is lower 
than is possible for any octahedron with one or more vacancies, then 
~>/~*. A lower bound on the minimum possible value of the restricted 
Hamiitonian for an octahedron with n < 6 molecules is given as the sum of 
n(- /~/6)  plus a lower bound on the minimum possible interaction energy 
which can be associated with an octahedron. A crude lower bound on this 
minimum interaction energy is given as the sum of 4el, which is the 
minimum interaction between molecules (or vacancies) on pairs of first- 
neighbor sites, plus 8e2, the minimum interaction between molecules or 
vacancies on pairs of second-neighbor sites. Therefore /~>/~* if, for all 
0~<n<6 ,  

4~, + 4e z + min{y2, 23'1 } - # < 4el + 8e2 - n#/6 (10) 

Therefore, if 

/~ > 6 min{~,2, 2y, } -24e2  (11) 
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the ground-state configurations contain no vacant sites and are the 
configurations described above. 

4. EXISTENCE OF ENANTIOMERIC PHASE SEPARATION 

In Section 3 we showed that if /at=/aa =/a is sufficiently large, if 
el < e2 < 0, and if either 0 < Y2 < 271 or 0 < 27~ < 72, then the Hamiltonian 
restricted to an octahedron constitutes an m-potential. Holsztynski and 
Slawny ~4~ have proved that if a restricted Hamiltonian is a finite-ranged 
m-potential, and if there are only a finite number of ground-state configura- 
tions, then the extension of the Peierls t'-I argument due to Pirogov and 
Sinai 1~2,~3) is sufficient to prove the existence of multiple equilibrium states 
in the model. Moreover, if the ground-state configurations are symmetry- 
related, these multiple equilibrium states exist if the temperature is 
sufficiently lowY 2" z31 

If 0<72<2) ,~ ,  there are 24 ground-state configurations. In each of 
these configurations, every lattice site is occupied by a molecule of the 
same enantiomeric type, d or /, and all of the molecules are in the same 
orientation. Since the ground-state configurations are symmetry-related, at 
sufficiently high chemical potential /a and sufficiently low temperature, the 
model has multiple equilibrium states. These low-temperature equilibrium 
states correspond to d- or /-rich phases which are small perturbations of 
one of the 24 enantiomerically pure ground-state configurations. Since the 
model contains only short-range interactions, there is only one equilibrium 
state at sufficiently high temperatures. ~ls~ Therefore a phase transition, 
corresponding to enantiomeric phase separation, occurs in this three- 
dimensional model system. 

As shown in Section 3, if 0 < 27~ < Y2 and /a is sufficiently large, there 
is an infinite number of ground-state configurations, each of which contains 
a racemic mixture of d and I molecules. We have not determined the nature 
of the equilibrium states which occur at low, but nonzero temperatures for 
the model in this region of parameter space. 
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